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ABSTRACT 

The inversion framework iTOUGH2 provides 
inverse modeling capabilities for TOUGH2, a 
general-purpose simulator for multiphase, multi-
component, nonisothermal flows in multidimen-
sional fractured-porous media. We have devel-
oped a parallel version of iTOUGH2, 
MPiTOUGH2, which realizes a hierarchically 
parallel architecture using the Message Passing 
Interface. This architecture allows employing 
large numbers of parallel processes for running 
many-parameter inverse problems on large 
meshes, such as those occurring in pixel-based 
parameterizations. 
 
We have further combined the parallel hydro-
logical inversion method with a geophysical 
modeling and inversion framework, called Elec-
tromagnetic Geological Mapper (EMGeo). The 
combined inversion method provides a tool for 
investigating coupled hydrogeophysical 
processes in the context of, for example, 
geologic CO2 storage, geothermal system char-
acterization, and environmental remediation and 
monitoring applications. In this work, we focus 
on the introduction of parallel computing para-
digms to iTOUGH2, and carry out basic scala-
bility tests. Further, exploiting the forward 
simulation capabilities of EMGeo, we present 
synthetic data inversions, demonstrating the 
potential model resolution enhancement 
obtained through joint inversion of hydrological 
and geophysical measurements.  

INTRODUCTION 

Joint inversion of hydrological and geophysical 
data has been recognized as a means of enhanc-
ing the typically sparse coverage of hydrological 
data, and thus achieving enhanced parameter 
resolution. A number of deterministic and sto-
chastic joint inversion approaches have been 

reported. We refer the reader to the works of 
Kowalsky et al. (2004, 2005), and Finsterle and 
Kowalsky (2008), and related works referenced 
in those for a comprehensive overview of 
various methods. 
 
Whenever a significant number of hydrological 
(and geophysical) simulations are carried out, 
such as in inverse modeling, computational effi-
ciency becomes paramount. In this work, we 
advance the inverse modeling capabilities of 
iTOUGH2 by introducing parallel computing 
paradigms, using the Message Passing Interface 
(MPI), both into the underlying (forward) simu-
lator given by TOUGH2, as well as the inverse 
modeling scheme. We further enhance the joint 
inversion capabilities by merging the parallel 
iTOUGH2 framework, called MPiTOUGH2, 
with the geophysical modeling methods 
provided by the geophysical simulator EMGeo. 
EMGeo is a 3D finite-difference scheme for the 
simulation and inversion of electri-
cal/electromagnetic geophysical data types, 
including controlled-source electromagnetics, 
magnetotellurics, electrical resistivity tomogra-
phy, and (spectral) induced polarization 
(Newman and Alumbaugh, 1997; Commer and 
Newman, 2008; Commer et. al., 2011). 
 
In this and an accompanying work, two hydro-
geophysical joint inversion approaches are used. 
The first strategy (presented in the second 
example of Kowalsky et al., 2012, this issue) 
involves a two-step approach. Field-scale 
electrical resistivity distribution maps, which 
would be obtained by inverting geophysical 
tomography data, are matched with their coun-
terparts calculated from tracer concentrations. 
The latter are updated from the parameter esti-
mates obtained during the iterative hydrological 
inversion procedure. The second approach, on 
which we focus in this work, involves a direct 
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joint inversion of hydrological and geophysical 
data. After each iTOUGH2 model updating step, 
the subsurface electrical resistivity distribution is 
updated from the current hydrological parameter 
state. Geophysical measurements are then sim-
ulated by the modeling methods available 
through EMGeo and matched with field data.  
We focus on the geophysical resistivity tomog-
raphy (ERT) method for the geophysical data 
component, which is sensitive to the subsurface 
electrical resistivity. Hence, we use Archie’s law 
as the petrophysical model to link hydrological 
to electrical attributes:  

! = !f"
mSn,  

where ! is bulk electrical conductivity, !f is 
fluid electrical conductivity, " is porosity, S is 
saturation, and m and n are site-specific param-
eters. The joint inversion capabilities are demon-
strated by carrying out synthetic inversion stud-
ies based on experiments performed at the U.S. 
Department of Energy Integrated Field Research 
Challenge Site (IFRC) at Rifle, Colorado.  

METHODOLGY 

The aforementioned geophysical component 
EMGeo is a geophysical data inversion package 
by itself, using nonlinear conjugate-gradient 
based optimization strategies. At the current 
development stage, we only utilize the inverse 
modeling capabilities of iTOUGH2, namely the 
Levenberg-Marquardt modification of the 
Gauss-Newton algorithm (Finsterle and Kow-
alsky, 2011). Parallelizing multiple forward sim-
ulations is essential in solving parameter esti-
mation problems with many unknowns. 
iTOUGH2 includes this feature, using the 
Parallel Virtual Machine (PVM) (Finsterle, 
1998). However, limitations are currently 
imposed by the fact that each forward problem 
can only be solved serially, i.e., using one 
process. 

Hierarchical Parallel Architecture 
The overall parallel architecture of the hydroge-
ophysical inversion scheme presented here bor-
rows a parallel layout used for the inversion of 
large-scale electromagnetic data sets (Commer 
et al., 2008), and combines it with slightly modi-
fied techniques used by the parallel simulator 
TOUGH-MP (Zhang et al., 2008) for the 

hydrological flow-simulation component. Both 
the fluid-flow and geophysical forward simula-
tors divide their respective simulation domains 
into a number of subdomains. The geophysical 
simulator uses proprietary parallel iterative solv-
ers for solving either Maxwell's equations, for 
simulating frequency-domain EM methods, or 
the Poisson equation, for potential field simula-
tions (such as electrical resistivity soundings), 
on large structured Cartesian finite-difference 
grids. TOUGH-MP uses the parallel linear-
equation solver AZTEC (Tuminaro et al., 1999) 
in conjunction with the TOUGH2 simulation 
framework to solve the fluid flow problem's 
mass and energy balance equations (Zhang et al., 
2008). The underlying simulator TOUGH2 
employs integral finite-differences on structured 
or unstructured grids for the spatial descretiza-
tion, while time is discretized using standard 
first-order backward finite differences.  
 
Here, we outline some new but straightforward 
aspects of adding another parallel level to the 
inverse scheme, employing the Message Passing 
Interface (MPI). In the inverse problem, the 
sensitivity calculations involved in the parameter 
estimation steps are by far the most computa-
tionally intense. As illustrated in Figure 1, these 
calculations are distributed among multiple 
processor groups, also called model communi-
cators. Each one is a separate MPI communica-
tor and holds a copy of the simulation domain.  
 
In the Levenberg-Marquardt implementation of 
iTOUGH2, the parameter sensitivity matrix is 
calculated by a perturbation approach. In the 
parallel version MPiTOUGH2, each model 
communicator is in charge of a subset of the 
parameter space and the corresponding forward 
simulations of their perturbations. Note that one 
parameter makes one column in the sensitivity 
matrix. The communicators can be scaled up 
according to the size of the matrix system to be 
solved in the forward problem, using the afore-
mentioned parallel structures of the geophysical 
and fluid-flow simulators. Thus, if massively 
parallel resources are available, inverse prob-
lems with both large simulation domains and 
large parameter numbers can be solved, within 
reasonable computing times, by adequately 
increasing the size and number of the model 
communicators.  
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Figure 1. Illustration of the parallel layout used in 

the parallel inversion scheme 
MPiTOUGH2. Multiple forward simula-
tions are distributed across multiple 
processor groups, where each group 
calculates a part of the parameter sensi-
tivity matrix. 

Parallel Scaling Tests 
In this work, we use a 3-D TOUGH2 model 
created for the inversion of tracer data collected 
during the 2007 “Winchester” surveys (Williams 
et al., 2011) for some parallel scalability tests. 
The TOUGH2 grid comprises 52,235 elements 
and 151,149 connections, and has been used by 
Kowalsky et al. (2012) for simulating the flow 
cell of interest in inversions of tracer break-
through data using a variety of hydraulic perme-
ability parameterizations. We consider a three-
parameter setup here, but for brevity, we omit 
further details about the model and data and 
refer to the aforementioned publication.  

Parallel forward solution scalability test 
Figure 2 shows run times for a forward simula-
tion using from one to eight Intel® Xeon 3.20 
GHz processors of a desktop computer. The bulk 
of the computing time is used for the iterative 
solution of the flow equations, including the 
AZTEC parallel solver’s internal message pass-
ing. More (external) message passing of primary 
thermodynamic variables across subdomain 

boundaries is involved in the equation-of-state 
update before each Newton-Raphson iteration. 
However, it appears that the overhead of this 
message passing is negligible, owing to commu-
nication improvements reported by Zhang et al. 
(2008). The second-largest computing time frac-
tion is needed for assembling the flow equation's 
matrix system at each Newton-Raphson itera-
tion, followed by updating the equation-of-state 
and miscellaneous routines. In this example, 
because the mesh size is not highly demanding 
of the computing hardware, we observe a quick 
flattening of the run times when using more than 
three parallel tasks. Further increasing the num-
ber of parallel tasks would thus not further speed 
up the simulation time, due to the solver 
library’s internal message passing overhead. 

 
Figure 2. Runtimes for a parallel forward simulation 

using 1-8 parallel processes on a desktop 
computer. 

Parallel inverse solution scalability test 
The same model and computing hardware as 
used before is now employed in a three-param-
eter hydrological tracer data inversion, based on 
studies of optimal permeability model parame-
terizations (Kowalsky et al., 2012). Since the 
inversion involves multiple forward simulations, 
we expect that the behavior of the runtimes 
behaves similar to Figure 2. This can be 
observed in general in Figure 3, which depicts 
the average runtimes per inversion iteration. 
However, the runtime increases going from two 
to three parallel tasks. It is common in parallel 
numerical calculations for the solution accuracy 
to vary with the number of parallel tasks 
employed, owing to the round-off error propa-
gation of the floating-point arithmetic (Asser-
rhine et al., 1995). In this particular example, it 
could be observed that the differences in the 
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iterative forward solutions propagate in a way 
that leads the three-process inverse solution onto 
a solution path in model space with a lower 
convergence rate. Figure 4 further illustrates this 
effect by comparing the data objective 
functional values between the one- and three-
process runs. While we do not elaborate further 
on details of this observation, we mention that 
both solutions yielded similar parameter 
estimates close to the true model. This round-off 
error effect may need to be taken into account as 
part of a systematic modeling error, especially in 
the presence of ill-posed inverse problems, 
where it is likely to be enhanced. The 
corresponding parameter-estimation uncertainty 
may then be quantified by carrying out multiple 
inversion realizations using different parallel 
configurations. Note that this can also be emu-
lated if fewer physical processors than parallel 
processes are available. 
 

 
Figure 3. Runtimes for a parallel inverse solution 

using 1-8 parallel processes on a desktop 
computer. 

 
Figure 4. Data fitting error functional convergence 

for the one- and three-processor inversion 
runs of the inversion scalability test 
(Figure 3). 

INVERSE MODELING RESULTS 

The simulation cases generated for this next 
study are based on experiments in a shallow 
aquifer at the IFRC site. The aquifer is 2.5–3 m 
thick and is located on the floodplain of the 
Colorado River in alluvium, with the base given 
by the impermeable Wasatch formation 
(Williams et al., 2011). One part of the 2011/12 
“Best Western” field experiments, on which we 
base our simulations, involved a conservative 
bicarbonate tracer injection to study uranium 
desorption in the absence of biostimulant-
dependent uranium immobilization effects. The 
synthetic data used in the following inversion 
studies are generated from a subset of the survey 
geometries and measurement time intervals of 
this bicarbonate tracer injection experiment. 
Figure 5 illustrates the spatio-temporal layout of 
the simulated experiment. We consider an eight-
parameter layered model, with vertically varying 
absolute hydraulic permeabilities as unknowns. 
As shown in the upper panel, the eight layers 
cover the aquifer’s depth from 3 to 6 m below 
the surface. The tracer was introduced in the 
aquifer at the depth range indicated by the white 
symbols in the left part of the second panel. 
Groundwater flows along the x-axis from left to 
right, and was simulated for a period of 149 days 
after injection begin. The principal effect of the 
tracer is an increased flux of dissolved ions (in 
this case Na+ and HCO3

-) resulting in an electri-
cal conductivity increase, where panels 2–6 
show the reciprocal: electrical resistivity in units 
of !m.  
 
The data set comprises a total of 219 average 
fluid electrical conductivity (EC) samples (given 
in units of µS/cm) measured in four boreholes, 
which are indicated by black lines in Figure 5. 
The EC data span a time period of more than 
140 days. The data errors are given by standard 
deviations of 25. Using this standard deviation, 
which amounts to roughly 1% of the mean data 
amplitude, Gaussian noise with zero mean is 
added to the data. The geophysical data set is 
given by ERT measurements at 30 days. The 
ERT borehole array has altogether 30 electrodes 
distributed over four wells (indicated by red 
symbols). Inverted data comprise a subset of six 
source current electrode pairs and a total of 123 
receiver electrode pairs, where one receiver 
electrode pair constitutes one geophysical data 
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point. Gaussian noise with zero mean and a 
standard deviation of 1% of the data amplitude 
is added to the data, in addition to a noise floor. 
The ERT data are characterized by a much 
larger dynamic range than the range of the EC 
data. Thus, the used standard deviation implies a 
lesser degree of noise distortion than is the case 
for the EC data set. 

 
Figure 5. Spatio-temporal setup and plume develop-

ment of an electrically conductive tracer 
injection simulated after a bicarbonate 
injection experiment at the IFRC site. The 
upper panel shows the true permeability 
model, where the horizontal lines indicate 
the boundaries of the eight layer parame-
ters. Panels 2–6 show the change of the 
aquifer’s electrical resistivity over a time 
period of 149 days after injection. 

Regularization of the Inverse Problem 
Many-parameter inverse problems, such as 
pixel-based inverse problems, are typically 
underdetermined, requiring the introduction of 
additional stabilization terms into the otherwise 
ill-posed problem. Two constraint types can be 
activated in iTOUGH2; these are prior 
knowledge and smoothness constraints 
(Finsterle, 2009). For the eight-parameter 
inverse problems in this work, we also observed 
a significant non-uniqueness problem that can be 
alleviated by introducing additional constraints. 
We introduce a practical method of automa-
tically defining smoothness constraints in the 
presence of many parameters. The approach uses 
the ensemble of interfaces (i.e., the connection 
block in the TOUGH2 input) between the 
elements of the simulation domain. From the 
elements belonging to inversion parameters, all 
(TOUGH2) connections are determined. If there 
exists at least one connection between the 
element ensembles of two given parameters, a 
regularization term is introduced for this param-
eter pair. In our case, an element ensemble is 
given by a layer parameter. This idea implies 
that the absence of connections between two 
neighboring parameters would allow for a sharp  
(unconstrained) contrast of their estimates. The 
regularization is incorporated into the inverse 
problem by augmenting the parameter sensitivity 
matrix by one line per unique parameter connec-
tion. 
  
One important aspect of constrained inversions 
is to properly weight the regularization terms 
against the information given by the calibration 
data. Figure 6 demonstrates the influence of the 
regularization weight, here called "-factor, on 
some trial inversions for the 8-layer test case. 
The "-factor is multiplied to the regularization 
term’s objective functional, and thus has the 
effect of balancing it with the data-fitting com-
ponent. All inversions used a homogeneous 
starting model with a negative log (base 10) 
permeability of -10.75. Each column group in 
Figure 6 pertains to the results for one layer 
parameter, where the first (left) column repre-
sents the true model, and the second, third, and 
fourth columns represent, respectively, the result 
from a regularized inversion with "=1, "=0 (no 
regularization), and "=10. 
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Figure 6. Inversion results with different smoothing 

regularization settings. Shown are perme-
ability (negative log base 10) estimates for 
the 8-layer model. For each layer param-
eter, the results using a "-factor of 1 (red), 
0 (green), and 10 (purple) are shown with 
the true model (blue). 

While the EC data of these inversions were not 
contaminated with noise, their assumed error 
standard deviation in the inversion was 250. 
With these error assumptions, a regularization 
weight of "=1 leads to parameter estimates very 
close to the true model, with the corresponding 
data fits shown in Figure 7 (red curves). 
Neglecting the regularization causes an over-
estimated parameter 4, compensated for by an 
underestimated parameter 8. The resulting data 
fits, shown by green curves in Figure 7, are very 
similar to the regularized ("=1) result, indicating 
the non-uniqueness of the unconstrained inverse 
solution.  
 

 

Figure 7. EC data fits calculated from inversion 
results with different smoothing 
regularization settings. The corresponding 
parameter estimates are shown in Figure 6. 

 

Imposing a factor of "=10 also leads to a param-
eter overshoot of the low-permeability layers, 
where now the smoothing constraint forces the 
permeability to gradually decrease for the deeper 
layers. This happens at the expense of the data 
fits, as shown by the worsening fits (purple 
curves in Figure 7). 

For all inversion runs carried out in the 
following, a regularization parameter of "=1 was 
found to be optimal. 

Hydrological Inversion 
In the following, all inversions are initiated with 
the homogeneous permeability model (log 
permeability of -10.75) as used before. Figure 8 
shows the results of an inversion of the EC data 
set, where the upper part (a) shows original data 
(black), and initial (blue) and final (red) data 
fits. The model result in the lower figure (b) was 
obtained after 10 Levenberg-Marquardt iterati-
ons, with the same colors referring to the true, 
initial, and final models, where the error bars for 
the final model indicate two standard deviations. 
A good overall EC data fit is achieved by the 
final model. However, the noise distortion 
causes layer parameters 1 and 3 (from top) to 
deviate beyond the estimated parameter standard 
deviations. However, the inversion achieves an 
acceptable data fit, indicating that despite the 
regularization constraints, the non-uniqueness 
problem is amplified by the data’s noise distor-
tion.  

Hydrogeophysical Joint Inversion 
Next, we include both the geophysical ERT data 
and the EC data sets in the inversion. Figures 9a 
and 9b again show original data, and the initial 
and final data fits for both the ERT and EC data 
sets, respectively. A greatly improved model 
result (c) is achieved by the combined data set. 
The final model also improves the fit of the EC 
data – a 13% decrease from the total EC data 
fitting error in the previous EC data inversion. 
The total data fitting errors are plotted in Figure 
10 against the inversion iterations for both inver-
sion cases. Note that the initial total error of the 
EC data inversion is identical to the EC compo-
nent of the joint inversion, since the homogene-
ous starting model produces no contribution to 
the error function’s regularization term. We 
observe that the EC data errors have a similar 
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convergence rate, which indicates that the influ-
ence of the EC and ERT components is well 
balanced in the joint inversion.  

 
Figure 8. Inversion of the hydrological (EC) data 

set for the 8-layer parameter model. The 
boreholes named CU-03, CD-11, CD-13, 
and CD-16 correspond to the positions 
shown in Figure 5 (black lines) at x=4.3, 
x=6.4, x=7.8, and x=10 m, respectively. 

CONCLUSIONS 

We have developed a parallel framework for the 
joint inversion of hydrological and geophysical 
data. The value of geophysical data, usually 
covering larger survey areas than hydrological 
data and being cost effective, has been recog-
nized. The development of efficient tools is thus 
important to fully exploit the potential resolution 
improvements given by combined hydrogeo-
physical data sets, and to investigate optimal 
spatiotemporal survey layouts for field applica-
tions.  
 
Inverse modeling in general poses large compu-
ting demands. These are addressed by joining 
different parallelization levels, both over the 
forward problem, i.e., the simulation domain, 
and over the inverse problem, i.e., the parameter 
space. 

 

Figure 9. Joint inversion of the hydrological (EC) 
and geophysical (ERT) data sets for the 8-
layer parameter model. 

 

Figure 10. Comparison of total data fitting errors for 
the EC-data inversion (black) and joint 
inversion. For the joint inversion, the total 
(red), and separate EC (blue) and ERT 
(green) errors are shown 
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Our parallel hydrogeophysical parameter 
estimation framework maximizes scalability by 
allowing the increase of both size and number of 
communicators sharing the whole inverse 
modeling problem. The scalability of the 
hydrological simulator is particularly important 
for the joint inversion with geophysical data, 
because of the typical large-scale nature of 
geophysical inverse problems. Limitations are 
currently imposed by memory constraints, 
owing to storage requirements of a potentially 
large copy of the parameter sensitivity matrix on 
each parallel process. 
 
The shown examples have demonstrated the 
potential model-resolution enhancements 
provided by geophysical data. It has also been 
shown that a properly chosen regularization 
parameter is essential for stabilizing the inher-
ently ill-posed geophysical inverse problem. For 
the presented results, the petrophysical trans-
form was assumed to be known. A next step will 
evaluate whether uncertainty in the petrophysi-
cal model can be accounted for by considering 
some of its parameters to be estimated in the 
inverse problem, utilizing the sensitivity of the 
geophysical data to these unknowns. 
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